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Abstract

We introduce simplex free adaptive tree numerical methods for solv-
ing static and time dependent Hamilton-Jacobi equations arising in level
set problems in arbitrary dimension. The data structure upon which our
method is built is a generalized n-dimensional binary tree, but it does
not require the complicated splitting of cubes into simplices (aka gen-
eralized n-dimensional triangles or hypertetrahedrons) that current tree
based methods require. It has enough simplicity that minor variants of
standard numerical Hamiltonians developed for uniform grids can be ap-
plied, yielding consistent, monotone, convergent schemes. Combined with
the fast sweeping strategy, the resulting tree based methods are highly
efficient and accurate. Thus, without changing more than a few lines of
code when changing dimension, we have obtained results for calculations
in up to n = 7 dimensions.

1 Introduction

In this paper we present a simplex free adaptive tree numerical method for
solving static and time dependent Hamilton-Jacobi partial differential equa-
tions (H-J PDEs) arising in level set problems in arbitrary dimension. The
method’s adaptivity increases resolution near the interface being studied, and
simplifies previous successful tree based implementations, allowing for its exten-
sion to arbitrary dimension without an increase in the complexity of function
reconstruction, which is a necessary part of finding spatial derivatives needed
in solving the PDEs.
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Applications in higher dimensions requiring adaptive meshes to resolve fine
details arise in numerous fields. In [23],[15],[9],[29] multi-valued solutions to H-
J equations were found by replacing a single valued solution with the level set
(or intersection of level sets) of a higher dimensional function. This idea was
also used in [2],[6],[8] to study interfaces with codimension > 1. In [32],[33] a
level set formulation was used to solve problems arising in mathematical finance,
where high dimensional issues are routinely encountered. Even for codimension-
1 problems in 3d there is still a desire to find implementable adaptive methods
to resolve fine details, such as in the segmentation of the human brain, or other
applications involving highly curved surfaces such as Wulff crystals. See [24],[31]
for a wide range of physical problems to which level set methods are applied.

Since the introduction of level set methods for interface tracking [22] there
has been work done in an attempt to reduce the component of the computa-
tional portion of the method subject to the most criticism: the necessity of
extra dimensions. Within a few years following [22] narrow band methods were
proposed that reduced the computational complexity by resolving the level set
function only near the interface being tracked [1],[38],[26]. These methods were
able to use the well established, convergent, finite difference schemes available
to uniform grids.

However, these narrow band methods did not reduce the storage require-
ments, limiting them to the same resolutions which uniform grids were re-
stricted. Following this, tree based methods were introduced, allowing for adap-
tivity of the mesh near the interface, while not sacrificing too much complexity
[34],[21],[11],[19]. The tree data structure used in these methods was well under-
stood by the computer science community, and thus data storage and retrieval
were able to be carried out in an efficient manner. However, the nonuniformity
of the mesh required new schemes to be developed for the PDEs to be solved.
In some cases semi-Lagrangian CIR [10] schemes were used for time dependent
level set equations. These schemes have some drawbacks, though. Firstly, they
are only provably convergent for hyperbolic problems, and many level set PDEs
involve mean curvature or are otherwise parabolic in nature. Secondly, they re-
quire a backtracking along characteristics and an interpolation at an arbitrary
point within the domain. This interpolation is a delicate process that requires
the division of the domain into simplices, which can become complicated in
higher dimensions [21]. In [19] CIR was used for advection of values stored
at cell corners, and cell centered data was stored for the pressure equation in
Navier-Stokes, where a one point (constant within each cell) interpolation tech-
nique was used to avoid apparent complexities, and to preserve the symmetry
of the discretization. In addition, for the eikonal equation used to maintain
the signed distance property of the level set function, [19] used some special
treatment at T-junctions in the context of the fast marching spirit [37].

There have been other local level set methods [20],[35],[5],[14],[4] proposed
which range from variants of AMR to using tubes of uniformly spaced grid
points near the interface. Some of the methods approach the complexity of [26],
eliminating the need to store the unused grid points away from the interface of
interest. They also allow for the standard finite difference schemes to be used

2



as the grid is uniform near the interface. However, with these gains comes addi-
tional complexity in implementation, and it should be noted that the successive
improvements and acceptance of the tree based methods in various applications
are testaments to their facility and usefulness.

In this paper we introduce a tree based method that retains the advantages
of the previous tree based algorithms, such as having a well studied and un-
derstood data structure, while avoiding the drawbacks of having inconsistent
schemes requiring n-dimensional simplices and interpolation. Thus we are able
to use the standard numerical Hamiltonians derived for uniform grids (modified
slightly) which result in consistent, monotone, convergent numerical methods.
Combined with the fast sweeping strategy [40],[36],[16],[28], the resulting tree
based methods are highly efficient and accurate.

The paper consists of a brief overview of the tree data structure, followed by
a discussion of the numerical schemes for static H-J equations, and then time
dependent H-J equations. Finally, numerical results are given for codimension-1,
codimension-2, and codimension-n problems.

2 Tree Data Structure

In this section we describe the tree data structure used. We use a generalized
binary tree (e.g. quadtree in 2d, octree in 3d, etc.) data structure, details
of which can be found in numerous computer science texts [18],[30],[13]. We
describe the portions of the implementation that are specific to our problem of
solving a PDE in a bounded spatial domain.

We assume a computational domain, Ω = [0, 1]n. At the kth level of the tree,
each node, c, represents a hypercube cell with sides of length dxc = 1/2k, and
center xc. We assume that the level set function value, φ, is stored at the centers
of mass of the nodes at the finest level of the tree, also known as the leaves.
When refinement of a cell is done, the cell is split into 2n subcells with side
lengths 1/2k+1. We do not allow any cells with side length ratio > 2 or < 0.5 to
be neighbors. This final restriction can be obtained by following the criterion of
refining any cell whose distance to the interface, Γ, is less than a constant times
its edge length [34]. In practice, if we are using a single level set function φ e.g.
for codimension-1 problems, if φ is a signed distance function then we can set
ρ ≥ (1+

√
n/2) and refine if |φ(xc)| < ρdxc. For problems where the intersection

of multiple level set functions, {φj}, represents Γ, where the level sets of the φj

are mutually orthogonal and each φj is a distance function measured along the
level sets of the other φi6=j , then we can compare ‖φ‖l2

to ρdxc.

3 Static H-J Equations

Here we introduce a fast sweeping implementation for solving certain static
Hamilton-Jacobi equations such as the eikonal equation |∇φ| = f or in general
H(∇φ) = f [36],[39],[40],[17]. These type of equations are commonly found
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when reinitializing the level set function to be a signed distance function during
a dynamic evolution, or for other weighted distance calculations that arise in
numerous physical problems.

In order to avoid n-triangulations that can lead to very complicated local
Hamiltonian solvers [28], we follow the same ideology that many other adaptive
and tree based methods follow: study a small number of local node config-
urations of the grid, and then appropriately scale them so that the various
operations of interpolation, refinement, etc. can be applied in the same way
anywhere in the domain.

3.1 Local Numerical Hamiltonian Solver

The first part of the fast sweeping method is the local numerical Hamiltonian
solver. We will design monotone, consistent solvers that do not require n-
triangulations.

3.1.1 Upwind Hamiltonians

The upwind Hamiltonians approximating the eikonal equation |∇u| = f with
boundary data given on Γ are based on using the Godunov Hamiltonian (GH):

Ĥ(Dx1

− u(y), Dx1

+ u(y), . . . , Dxn

− u(y), Dxn

+ u(y)) =
√

√

√

√

n
∑

i=1

max{(Dxi

− u(y))+, (Dxi

+ u(y))−}2 (1)

where y is a grid point where we wish to update the numerical solution u, or
the Osher-Sethian Hamiltonian (OSH):

Ĥ(Dx1

− u(y), Dx1

+ u(y), . . . , Dxn

− u(y), Dxn

+ u(y)) =
√

√

√

√

n
∑

i=1

[(Dxi

− u(y))+]2 + [(Dx1

+ u(y))−]2. (2)

Godunov numerical Hamiltonians were evaluated in [3],[25]. For nonlinear HJ
equations whose Hamiltonians differ significantly from that of the eikonal equa-
tion the resulting expressions become quite complicated, involving many “if”
statements.

When the grid is uniform along the ith axis, the standard 2 point finite

difference can be used for e.g. Dxi

− u(y), by taking u(y)−u(y−δei)
δ , where δ is the

local spacing between nodes in the ith direction.
Admittedly, the grid is not uniform everywhere, so when we try to compute

quantities such as Dxi

− u(y) we will not have a uniform definition throughout all
of the domain. However, because the grid refinement is done predictably (by
this we mean that there are only a small number of local configurations of the
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grid, up to scaling), we can quickly find the value at an offset point in the −ei

direction, u(y − δei), needed in Dxi

− u(y).
We assume that the tree is constructed so that in each cell S, uS is defined

at the center, yS, of S, and each cell is an n-cube with equal side lengths given
by δS . This uniform restriction can be relaxed, but for expositional purposes it
will not be. Also, we note the restriction that the ratio of the δ of neighboring
cells is either 2, 1 or 1/2.

In any dimension, n, there are only 3 possible local configurations that need
examining, when attempting to find Dxi

− u(y):

1. The cell B that is adjacent to cell A ∋ y in the −ei direction is exactly
the same size as A, thus u(y − δei) = uB, δ = δA = δB. This is standard
2 point finite differencing.

2. The cell B that is adjacent to cell A ∋ y in the −ei direction is smaller
than A, i.e. δB = δA/2. In this case we have a situation illustrated in
Figure 1 in 2d. In n dimensions we take u(y − δei) = { the average of
the 2n adjacent neighboring cells whose faces with outward normal ei are
touching the face of A that has outward normal −ei }. As the centers of all
these points are coplanar, this is just the linearly interpolated value at the
point P that is the intersection of the plane containing these neighboring
cell centers and the ray given in parametric form by r(τ) = y− τei, τ ≥ 0.

3. The cell B that is adjacent to cell A ∋ y in the −ei direction is larger than
A, i.e. δB = 2δA. In this case yB does not lie along r(τ). However, because
of the structure of the grid points in the tree, there is a neighboring cell, C,
of A such that yByC intersects r(τ). This cell C is the diagonal neighbor
of A in the direction

(sgn(yA,1 − yB,1), . . . , sgn(yA,i−1 − yB,i−1),

− sgn(yA,i − yB,i),

sgn(yA,i+1 − yB,i+1), . . . , sgn(yA,n − yB,n)),

where sgn is the signum function.

In this case there are 2 possibilities for C: case 1. C is either the same
size as A; case 2. C is the same size as B. See Figures 2, 3 for diagrams
of these cases in 2d and 3d.

The interpolated value at the intersection point P is

u(P ) =
1

|yByC |
(

u(yB)
∣

∣yBP
∣

∣+ u(yC)
∣

∣yCP
∣

∣

)

= u(yB)wB + u(yC)wC .

(3)

Also, we have δ = wB |yB,i − yA,i| + wC |yC,i − yA,i|. In case 1 we find
wB = 2/3, wC = 1/3, and in case 2 we find wB = 3/4, wC = 1/4. These
are the weights for any dimension n, which is very appealing in that we
do not have to resort to complicated n-triangulations.
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A

B C

P

Figure 1: Case where neighboring cells are smaller than A.

P
B

A

C

PB

A

C

Figure 2: Cases where neighboring cell B is larger than A in 2d. Left: case 1,
right: case 2.

We define δi,− = δ in this particular case because yB,i < yA,i. In the case
where yB,i > yA,i, δi,+ is defined as the distance between P and A.

Once one has found all the Dxi

± u(y), ∀i one can solve the quadratic equation
arising from the local numerical Hamiltonian for u(y), and update the solution
with this found value. Because the δi,± in each particular Dxi

± u(y) could be
different, the Godunov solver introduced in [40] with its simple min and if
statements is not applicable. However, the procedure for finding the correct
solution of

[

(x − a1)
+

h1

]2

+ · · · +
[

(x − am)+

hm

]2

= f (4)

can be used. We present the case for OSH, as GH is more complicated (but
feasible).

1. Let the aj , j = 1 : 2n be the points from the finite differences

{aj} = {u(yA ± eiδi,±)}, i = 1 : n,

ordered from least to greatest, and the hj be the corresponding offset
distances from yA (the hj will not be in any particular order). We set
a2n+1 = ∞.
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A

P

C

B

P

Figure 3: Cases where neighboring cell B is larger than A in 3d. Left: case 1,
right: case 2.

2. Set m = 1;

3. Solve
∑m

j=1[
(x−aj)

+

hj
]2 = f to get a solution x̂.

4. Check to see if x̂ ≤ am+1. If so, then we are done and we set u(y) = x̂. If
not, then we set m → m + 1, and go to step 3, unless m = 2n, then we
are done.

Note: the implementation of this solution algorithm is independent of n,
except for the number of terms in the sum.

The algorithm for GH is more complicated as GH includes max functions
that OSH does not. The only drawback of OSH is its slightly larger error near
sonic shocks, but if we refine the grid such that it is locally uniform at sonic
shocks, then GH could be used there (and anywhere else on the grid that is
locally uniform), as it can be solved by the method presented in [40].

Note that monotonicity is satisfied because of the positive weights, w, mul-
tiplying the u(z), z 6= y in each finite difference. Also, because of the linear
interpolations used, the scheme is consistent. Thus, the scheme is convergent.

3.1.2 Lax-Friedrichs Hamiltonian

Here we present a Lax-Friedrichs Hamiltonian (LFH) which does not require
nonlinear inversions when it is being solved. This extends its applicability to a
wide range problems including those with nonconvex Hamiltonians. This is a
generalization of the Hamiltonian presented in [16].

The numerical Hamiltonian for H(∇u) = f with boundary data given on Γ

7



is as follows:

Ĥ(Dx1

− u(y), Dx1

+ u(y), . . . , Dxn

− u(y), Dxn

+ u(y)) =

H(w−
1 Dx1

− u(y) + w+
1 Dx1

+ u(y), . . . , w−
n Dxn

− u(y) + w+
n Dxn

+ u(y))

−
n
∑

i=1

σi(D
xi

+ u(y) − Dxi

− u(y)), (5)

where

w+
i =

δi,+

δi,+ + δi,−
, w−

i =
δi,−

δi,+ + δi,−
. (6)

Note that w+
i + w−

i = 1 so the scheme is consistent.
To determine the size of σi we note that monotonicity requires that

∂Ĥ/∂p+
i ≤ 0, ∂Ĥ/∂p−i ≥ 0.

This leads to the requirement

σi ≥ |Hpi
|max(w+

i , w−
i ).

Within the fast sweeping framework, in order to advance the solution a single
iteration, one writes (5) in the form

Ĥ = L(u(Ω \ y)) + cu(y),

and then the advancement can be written as

un+1(y) =
f(y) − L(un(Ω \ y))

c
.

The weights w are composed precisely so that the coefficient c can be calculated
in a linear way purely from the artificial diffusion term.

Implementation of this LFH is simpler than GH or OSH because it does not
require the inversion of H . Thus is does not require any if statements and is
thus faster per iteration. However, it does require more iterations to converge.

3.2 Sweeping Directions

The second part of the fast sweeping method is to determine the directions
of the sweep. In [28] a strategy using reference points was introduced, with
an initial sequential ordering of the nodes with respect to their distances from
these points. This could work for our method, but the built in structure of the
tree allows for another method of sweeping.

The tree specific sweeping method is as follows:

1. Each ordering of sweeping is defined by an ordering of the vertices of the
n-cube. In n dimensions there are 2n possible sweeps that are found by
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A

C D

B

Figure 4: Sample child ordering in 2d. The outer perimeter is the boundary of
the parent cell. Each lettered interior square corresponds to a child pointer to
one of the 4 smaller squares.

taking all combinations of sweeping from low to high, or high to low in
each dimension. So in 2d if the vertices of a square are as in Figure 4 the
possible orderings are

{A, B, C, D},
{D, C, B, A},
{C, D, A, B},
{B, A, D, C}.

2. For each of the orderings in step 1, call a preorder traversal [18] of the grid
starting at the root node, based on a particular ordering of the children
given from the previous step. When a leaf is reached, update the solution
using the local Hamiltonian solver.

This means that if we choose the child ordering {A, B, C, D} then we call
a preorder traversal with node A as the starting node, followed by a preorder
traversal with node B as the starting node, etc. Once the traversal has gotten
to the leaf of the tree (i.e. a node with no children) we update u. This recursive
type of tree visitation is standard and can be found in any thorough book on
computer algorithms and binary trees [18],[30].

Figure 5 shows a sample ordering of the nodes when all nodes are at a
uniform depth in the tree. In this particular case the sweeping algorithm will
give exactly the same result as the standard sweep ordering [40] for a uniform
grid of this size with a fixed node at the origin with u(0, 0) = 0. This is because
for each node visited in this sweep, all nodes to the south and west of it have
already been updated in the sweep.

However, when the grid is not uniform we have found that extra sweeps are
needed as Dxi

− u(y) may depend on nodes that are farther north or east than
y, as is the case when the stencil choices in Figure 2 would be used. We make
some comments on this. Firstly, since the sweeping strategy accesses all nodes
systematically, the tree based methods will converge eventually, no matter how
many sweeps it needs. Secondly, since there are many more possible information
flowing directions on a non-uniform grid as demonstrated in [28], and the tree
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Figure 5: Nodes that are leaves of a tree on a uniform 16 x 16 grid, and the
path connecting sequential nodes in the sweep from bottom left to top right.

specific sweeping method designed here will only allow a finite number of such
information flowing directions to be treated simultaneously, it is reasonable for
the tree specific methods to use extra sweeps to converge. Thirdly, it is possible
to design optimal tree specific sweeping methods by reordering the nodes so
that all the possible information flowing directions can be covered with a finite
number of tree-based orderings.

3.3 Solution Procedure

The complete solution procedure is as follows:

1. Assume we are given a grid upon which the solution φ will be solved. Find
all points within a small O(dx) distance of Γ and find an approximate
solution φn at these points. This can be done by interpolating the known
boundary Γ. Set all other points to a large value, e.g. φn = 1010, which
is larger than the exact solution on the grid.

2. Sweep through the domain {xj} using a preorder traversal specified by
one of the 2n orderings of child pointers, solving for φ∗(xj) at each grid
point using Gauss-Siedel iteration by inverting GH, OSH or LFH. Take
φn+1 = min(φ∗(xj), φ

n(xj)).

3. Check if ‖φn − φn+1‖∞ < ǫ, where ǫ is a fixed tolerance to indicate con-
vergence has been reached. If convergence has not been reached go to step
2.
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4 Time Dependent Level Set Equations

This section concerns solving time dependent H-J equations as well as higher
order parabolic equations such as mean curvature motion that arise frequently
in level set problems. We will introduce the way in which: 1. the numerical
Hamiltonian is constructed; 2. new values are chosen on the grid in a monotone
way after a refinement/coarsening has taken place.

4.1 Numerical Hamiltonian

Examining the constructions for the functions at the points y ± δei from the
section on static H-J equations we can see that 2 point upwind differences can
be calculated easily for any fine grid point y. For example

Dxi

− u(y) =
u(y) − (u(yB)wB + u(yC)wC)

δ
, (7)

using the notation from (3). Then standard monotone numerical Hamiltonians
such as GH, OSH and LFH can be used with Runge-Kutta (R-K) timestepping
with the CFL condition determined by the finest cell size being used. For
higher order WENO type reconstructions a bit more work would be involved,
but they are certainly possible to construct and we would still avoid the need
to use high dimensional triangulations. Central differences and higher order
derivatives can be calculated by using the weightings, w, that were introduced
in section 3.1.2 for Lax-Friedrichs Hamiltonians after calculating the first order
upwind differences at the grid points.

4.2 Interpolation After Refinement/Coarsening

We would like the interpolation processes to be consistent and monotone as well
so that our entire scheme including adaptation is stable. Also, we would like to
avoid having to work with any high dimensional simplices. It turns out that as
was the case with the upwind differencing, we have only a few different cases
that can be applied to all dimensions in the same way.

4.2.1 Coarsening

After a coarsening the value at the center of the node of size 1/2k that just
became a leaf is set to be the average of the 2n function values at the nodes
with side lengths 1/2k+1 that were its children. Coarsening is done if all the
siblings of a cell c are at the same level as c and have not been marked for
refinement, and if the resulting averaged coarsened value, φcoarsened, does not
violate the refinement condition (i.e. we do not have |φcoarsened| < 2ρdxc).

4.2.2 Refinement

Examining Figure 6 we can see that after refinement we can use 2 point linear
interpolation to find the new value at point A with weights: in case 1, wB =
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Figure 6: Possible refinement cases in 2d. A: Node where interpolation is eval-
uated. B: Node at center of coarse cell that was divided. C: Diagonal neighbor
used in interpolation. Left: Case 1. Right: Case 2.

2/3, wC = 1/3; and in case 2, wB = 3/4, wC = 1/4. These are the weights
for any dimension n where the diagonal neighbor, C, is the adjacent cell in the
direction

(sgn(yA,1 − yB,1), . . . , sgn(yA,n − yB,n)).

Both the coarsening and refinement interpolations are monotone and con-
sistent for linear functions φ.

4.3 Solution Procedure

The complete solution procedure for the time dependent problem is as follows:

1. Assume we are given a grid upon which the solution φ will be solved, and
we are given initial conditions φn. If φn is not a signed distance function
then use the fast sweeping method with OSH or GH to reinitialize the
solution.

2. For each time step, for every grid point, advance the time dependent H-J
equation forward one time step.

3. Reinitialize the solution using fast sweeping.

4. Refine the solution where necessary.

12



5. Coarsen the solution where necessary.

6. Go to step 2.

It should be noted that the reinitialization/refinement/coarsening proce-
dures do not need to be carried out every time step, but should be done at
least once every few time steps.

5 Numerical Results

In this section numerical results are presented for both static and time dependent
problems for codimension-1, codimension-2, and codimension-n problems. We
refrain from studying the reduced memory requirements that the tree method
gains over uniform discretizations as these are well presented in [21]. We focus
on presenting convergence rate estimates and show error results in dimensions
up to n = 7. For the time dependent problems we use forward Euler time
advancement.

In Table 1 we show errors and node counts for a codimension-n problem of
solving the eikonal equation

|∇φ| = 1, (8)

with a boundary point at xb = (0.5, 0.5, . . . , 0.5) with value u(xb) = 0. In this
table the number of leaves represents the number of points where the function
value is stored, while the number of uniform points represents what this number
would be if a uniform grid with the finest dx listed was used. We note that the
adaptivity for this problem is based on knowledge of the distance to the fixed
node at the center of the domain, which is essentially knowledge of the solution
to (8). Thus a better adaptivity routine needs to be formulated, which will be
the subject of future research.

We use the preorder traversal fast sweeping method with the OSH numerical
Hamiltonian. The error is measured on the finest 3 levels of leaves, except in
7d where it is measured on the finest 2 levels of leaves.

An interesting point to note is that when a stopping criterion is used such
as stopping when the change in the error is < 10−12 we find that the number
of sweeps needed to achieve this criterion does not increase linearly in n, but
rather stagnates. For example in 5d we need only 30 sweeps, in 6d we need 35,
and in 7d only 32. Perhaps this is some effect particular to our specific example,
but perhaps not.

In Table 2 we show errors and convergence rate estimates for the time de-
pendent H-J equation

φt + |∇φ| = 0, (9)

with initial condition given by a hypersphere of radius 0.2 centered at the point
xb = (0.5, 0.5, . . . , 0.5). The normal motion moves the hypersphere inwards
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finest dx L1 error L∞ error N leaves of tree N uniform points n
1/256 6.046 E-05 7.193 E-03 304 65,536 2
1/256 1.293 E-05 1.126 E-02 2,472 16,777,216 3
1/256 3.056 E-06 1.615 E-02 26,896 4.295 E+09 4
1/256 7.209 E-07 2.027 E-02 309,536 1.100 E+12 5
1/128 2.018 E-05 4.802 E-02 2,822,464 4.398 E+12 6
1/16 1.607 E-01 2.307 E-01 9,379,840 2.684 E+08 7

Table 1: Errors for eikonal equation.

towards xb with constant normal velocity = 1. The error is measured by de-
termining the volume of the hypersphere at the final time, T , (which is taken
to be near 0.1) and then measuring the error in the implied radius versus the
exact radius = 0.2 − T . This is basically an L1 error estimate.

finest dx error rate dimension
1/32 9.605 E-03 - 3
1/64 4.376 E-03 1.134 3
1/128 2.110 E-03 1.052 3
1/256 1.263 E-03 0.741 3

1/32 8.201 E-03 - 4
1/64 4.147 E-03 0.984 4
1/128 2.138 E-03 0.956 4

1/16 3.220 E-02 - 5
1/32 1.112 E-02 1.535 5

1/16 1.743 E-02 - 6

Table 2: Convergence rate estimate for constant motion in normal direction.

In Table 3 we show errors and convergence rate estimates for time dependent
motion by mean curvature

φt + κ |∇φ| = 0, (10)

where

κ ≡ −
[ n
∑

i=1

φxixi

( n
∑

j=1
j 6=i

φ2
xj

)

−
n
∑

i=1

n
∑

j=1
j 6=i

φxixj
φxi

φxj

]

/|∇φ|3,

is the scaled mean curvature of the set Γ = {x|φ(x)} = 0. We initialize Γ as
a hypersphere of radius 0.2 centered at the point xb = (0.5, 0.5, . . . , 0.5). The
first partial derivatives of κ are found using centered differences as suggested
above with the weights w indicated in the section on the LFH, and the second
derivatives are found using 3 point centered stencils.

14



The mean curvature motion moves the hypersphere inwards towards xb with
normal velocity = (n − 1)/r(t), where r(t) is the radius of the hypersphere at
time t. The exact solution is a hypersphere with r(t) =

√

0.22 − 2(n − 1)t,
centered at xb. The final time varies from dimension to dimension but we take
O(1/dxglobalmin) number of time steps for the coarsest grid in each dimension’s
convergence study. The error is measured in the same way as it was for the
normal motion case.

finets dx error rate dimension
1/32 1.821 E-03 - 2
1/64 6.011 E-04 1.599 2
1/128 1.581 E-04 1.927 2
1/256 6.457 E-06 4.614 2

1/32 1.786 E-03 - 3
1/64 3.217 E-04 2.473 3
1/128 1.951 E-05 4.044 3

1/16 2.114 E-02 - 4
1/32 1.482 E-02 0.513 4
1/64 7.155 E-03 1.051 4

Table 3: Convergence rate estimate for mean curvature motion.

In Table 4 we show error convergence rates for a codimension-2 problem of
advection of a closed curve in 3d [6]. We advance

(φj)t + V · ∇φj = 0, V = (1, 1, 1), (11)

for j = 1, 2, where the initial condition is given by a circle of radius 0.2 centered
at xb = (0.25, 0.25, 0.25). This circle is defined by the intersection of the 0 level
sets of 2 level set functions, φ1, φ2. The final time is T = 0.3125. The exact
solution is a circle centered at (0.5625, 0.5625, 0.5625) with radius = 0.2. For
this problem it is necessary to set the φj to be orthogonal to each other every
few time steps. This is done in a fast sweeping way as presented in [7]. The
error is measured at t = T by sampling the circle that is the exact solution with
500 points, {y}, and estimating the L1 error of

√

φ1(y)2 + φ2(y)2 on the circle.

finest dx error rate
1/16 4.520 E-02 -
1/32 2.544 E-02 0.829
1/64 1.372 E-02 0.891
1/128 7.261 E-03 0.918

Table 4: Convergence rate estimate for motion of a closed curve in 3d.
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In Figure 7 we show contour plots of Wulff shapes [27] arising from solving

(

√

p2 + q2 + r2 + 2|r|
)

(

1 + 3

√

(p2 + q2)3/2 − (3p2q − q3)

2(p2 + q2)3/2

)

= 1, (12)

where (p, q, r) = (φx, φy, φz). This equation is equivalent to solving

γ

( ∇φ

|∇φ|

)

|∇φ| = (1 + 2| sin θ1|)(1 + | sin(1.5(θ2 + 0.5π))|)|∇φ| = 1,

where γ is known as the surface tension in materials science, and is a function
of the spherical coordinates (θ1, θ2). For this and the next example we use
fast sweeping with LFH. The diffusion terms satisfy σ = (9/4, 9/4, 27/8). We
fix a point in the center of the domain with the value 0. The grid is adapted
similarly to how it would be for a usual level set evolution, but with the coarsest
resolution being dx = 1/64, and the finest resolution, dx = 1/1024. Neumann
BCs φη = 0 are used. The total number of iterations needed for the maximum
change in the solution in subsequent iterations to be reduced to < 10−6 in this
example is 836.

In Figure 8 we show contour plots of Wulff shapes arising from solving

(

√

p2 + q2 + r2 +

√

2
√

p2 + q2 + r2
∣

∣

∣

√
3|r| −

√

p2 + q2
∣

∣

∣

)

(

1 +

√

(p2 + q2)5/2 − (−5p4q + 10p2q3 − q5)

2(p2 + q2)5/2

)

= 1. (13)

This equation is equivalent to solving

γ

( ∇φ

|∇φ|

)

|∇φ| = (1 + 2
√

sin(|θ1| − 0.5π))(1 + | sin(2.5(θ2 + 0.5π))|)|∇φ| = 1.

The diffusion terms satisfy σ = (7/4, 7/4, 2). The total number of iterations
needed for the maximum change in the solution in subsequent iterations to be
reduced to < 10−6 is 429.

For these last 2 examples the adaptation strategy is based on each point’s
l2 distance to the fixed point, which is not the optimal refinement strategy
for minimizing the global error in most norms. Thus there remains work to
do in determining better adaptation strategies. However, the point of these
examples is to show the convergence of the fast sweeping method using the
LFH in a number of sweeps comparable to the number found in [16] for the
same examples. See [16] for more details on these Wulff crystal problems.

6 Conclusion

We have introduced a tree based adaptive method for solving level set equations
which has the advantage of being simplex free. Its implementation changes very
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Figure 7: Wulff crystal with surface tension γ
(

∇φ
|∇φ|

)

= (1 + 2| sin θ1|)(1 +

| sin(1.5(θ2 + 0.5π))|). Contours from left to right at φ = 0.08, 0.14, 0.2.

Figure 8: Wulff crystal with surface tension γ
(

∇φ
|∇φ|

)

= (1 +

2
√

sin(|θ1| − 0.5π))(1 + | sin(2.5(θ2 + 0.5π))|). Contours from left to right at
φ = 0.08, 0.14, 0.2.
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little from dimension to dimension, allowing use by even the most hyperspatially
challenged practitioner. It allows for well studied monotone numerical Hamilto-
nians to be used, avoiding the complications that often arise when constructing
monotone numerical Hamiltonians on unstructured grids. The method has been
applied to codimension-m, 1 ≤ m ≤ n, linear and nonlinear, first and second
order, static and time dependent H-J problems in up to 7d.

Future work will include improving the adaptive procedure for static prob-
lems, based on user defined global errors. Also, WENO type methods will be
explored to increase the accuracy. Although we do not show numerical examples
here, the method could be extended to higher (> 2) order nonlinear PDEs such
as Willmore flows [12]. Finally, it should be noted that although the methods
presented are done so for H-J problems, they could be applied to other applica-
tions requiring adaptive meshes and function interpolation and reconstruction.
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